Latest articles from our scientists Fast and accurate genomic analyses using genome graphs Goran Rakocevic, Vladimir Semenyuk, Wan-Ping Lee, James Spencer, John Browning, Ivan J. Johnson, Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, Maria C. Suciu, Sun-Gou Ji, Gülfem Demir, Lizao Li, Berke Ç. Toptaş, Alexey Dolgoborodov, Björn Pollex, Iosif Spulber, Irina Glotova, Péter Kómár, Andrew L. Stachyra, Yilong Li, Milos Popovic, Morten Källberg, Amit Jain and Deniz Kural Nature Genetics (2019) 51 (354–362) doi: https://doi.org/10.1038/s41588-018-0316-4 Initial publication of our graph-based tool set for genomic data analysis. Furthering the pan-genome paradigm using a sequence variation graph representation of genome variation. Enabling precision medicine via standard communication of HTS provenance, analysis, and results Gil Alterovitz, Dennis Dean, Carole Goble, Michael R. Crusoe, Stian Soiland-Reyes, Amanda Bell, Anais Hayes, Anita Suresh, Anjan Purkayastha, Charles H. King, Dan Taylor, Elaine Johanson, Elaine E. Thompson, Eric Donaldson, Hiroki Morizono, Hsinyi Tsang, Jeet K. Vora, Jeremy Goecks, Jianchao Yao, Jonas S. Almeida, Jonathon Keeney, KanakaDurga Addepalli, Konstantinos Krampis, Krista M. Smith, Lydia Guo, Mark Walderhaug, Marco Schito, Matthew Ezewudo, Nuria Guimera, Paul Walsh, Robel Kahsay, Srikanth Gottipati, Timothy C. Rodwell, Toby Bloom, Yuching Lai, Vahan Simonyan, Raja Mazumder PLoS Biology (December 31, 2018) doi: https://doi.org/10.1371/journal.pbio.3000099 A personalized approach based on a patient’s or pathogen’s unique genomic sequence is the foundation of precision medicine. PGP-UK: a research and citizen science hybrid project in support of personalized medicine Stephan Beck, Alison M Berner, Graham Bignell, Maggie Bond, Martin J Callanan, Olga Chervova, Lucia Conde, Manuel Corpas, Simone Ecker, Hannah R Elliott, Silvana A Fioramonti, Adrienne M Flanagan, Ricarda Gaentzsch, Elizabeth H. Williams, David Graham, Deirdre Gribbin, Jose Afonso Guerra-Assuncao, Rifat Hamoudi, Vincent Harding, Paul L Harrison, Javier Herrero, Jana Hofmann, Erica Jones, Saif Khan, Jane Kaye, Polly Kerr, Emanuele Libertini, Laura McCormack, Ismail Moghul, Nikolas Pontikos, Sharmini Rajanayagam, Kirti Rana, Momodou Semega-Janneh, Colin P Smith, Louise Strom, Sevgi Urmur, Amy P Webster, Karen Wint, John N Wood BMC Medical Genomics (27 November 2018) 11: 108 doi: 10.1186/s12920-018-0423-1 Association analysis using somatic mutations Yang Liu, Qianchan He, Wei Sun PLoS Genetics (2 November 2018) doi: https://doi.org/10.1371/journal.pgen.1007746 QuagmiR: A Cloud-based Application for IsomiR Big Data Analytics Xavier Bofill-De Ros, Kevin Chen, Susanna Chen, Nikola Tesic, Dusan Randjelovic, Nikola Skundric, Svetozar Nesic, Vojislav Varjacic, Elizabeth H. Williams, Raunaq Malhotra, Minjie Jiang, Shuo Gu Bioinformatics (8 Oct 2018) doi: 10.1093/bioinformatics/bty843 Using Semantic Web technologies to enable cancer genomics discovery at petabyte scale Cejovic J, Radenkovic J, Mladenovic V, Stanojevic A, Miletic M, Radanovic S, Bajcic D, Djordjevic D, Jelic F, Nesic M, Lau J, Grady P, Groves-Kirkby N, Kural D, Davis-Dusenbery B Cancer Informatics (28 Sept 2018) doi: 10.1177/1176935118774787 This paper describes a Semantic-Web-based Data Browser for the Cancer Genomics Cloud, which allows users to visually build and execute ontology-driven queries, improving data access and usability. The Immune Landscape of Cancer Vesteinn Thorsson, David L. Gibbs, Scott D. Brown, Denise Wolf, Dante S. Bortone, Tai-Hsien Ou Yang, Eduard Porta Pardo, Galen Gao, Christopher L. Plaisier, James A. Eddy, Elad Ziv, Aedin C. Culhane, Evan O. Paull, I.K. Ashok Sivakumar, Andrew J. Gentles, Raunaq Malhotra, Farshad Farshidfar, Antonio Colaprico, Joel S. Parker, Lisle E. Mose, Nam Sy Vo, Jianfang Liu, Yuexin Liu, Janet Rader, Varsha Dhankani, Sheila M. Reynolds, Reanne Bowlby, Andrea Califano, Andrew D. Cherniack, Dimitris Anastassiou, Davide Bedognetti, Arvind Rao, Ken Chen, Alexander Krasnitz, Hai Hu, Tathiane M. Malta, Houtan Noushmehr, Chandra Sekhar Pedamallu, Susan Bullman, Akinyemi I. Ojesina, Andrew Lamb, Wanding Zhou, Hui Shen, Toni K. Choueiri, John N. Weinstein, Justin Guinney, Joel Saltz, Robert A. Holt, Charles E. Rabkin, The Cancer Genome Atlas Research Network, Alex J. Lazar, Jonathan S. Serody, Elizabeth G. Demicco, Mary L. Disis, Benjamin Vincent, llya Shmulevich Immunity 48 (4) (5 Apr 2018) doi: 10.1016/j.immuni.2018.03.023 The Cancer Genomics Cloud: collaborative, reproducible, and democratized—a new paradigm in large-scale computational research Lau JW, Lehnert E, Sethi A, Malhotra R, Kaushik G, Onder Z, Groves-Kirkby N, Mihajlovic A, DiGiovanna J, Srdic M, Bajcic D, Radenkovic J, Mladenovic V, Krstanovic D, Arsenijevic V, Klisic D, Mitrovic M, Bogicevic I, Kural D, Davis-Dusenbery B; for The Seven Bridges CGC Team Cancer Research (2017) 77 (21): e3–6. doi: 10.1158/0008-5472.CAN-17-0387 This publication describes the Seven Bridges Cancer Genomics Cloud, a cloud-based system that enables researchers to rapidly access and collaborate on massive public cancer genomics datasets, including The Cancer Genome Atlas. Collaborating to compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium Grossman RL, Abel B, Angiuoli S, Barrett JC, Bassett D, Bramlett K, Blumenthal GM, Carlsson A, Cortese R, DiGiovanna J, Davis-Dusenbery B, Dittamore R, Eberhard DA, Febbo P, Fitzsimons M, Flamig Z, Godsey J, Goswami J, Gruen A, Ortuño F, Han J, Hayes D, Hicks J, Holloway D, Hovelson D, Johnson J, Juhl H, Kalamegham R, Kamal R, Kang Q, Kelloff GJ, Klozenbuecher M, Kolatkar A, Kuhn P, Langone K, Leary R, Loverso P, Manmathan H, Martin A-M, Martini J, Miller D, Mitchell M, Morgan T, Mulpuri R, Nguyen T, Otto G, Pathak A, Peters E, Philip R, Posadas E, Reese D, Reese MG, Robinson D, Dei Rossi A, Sakul H, Schageman J, Singh S, Scher HI, Schmitt K, Silvestro A, Simmons J, Simmons T, Sislow J, Talasaz A, Tang P, Tewari M, Tomlins S, Toukhy H, Tseng HR, Tuck M, Tzou A, Vinson J, Wang Y, Wells W, Welsh A, Wilbanks J, Wolf J, Young L, Lee JSH, Leiman LC Clin Pharmacol Ther (2017) 101 (5): 589–592. doi: 10.1002/cpt.666 This article introduces the The Blood Profiling Atlas in Cancer (BloodPAC), which works to harmonize and make available data, to accelerate the development of minimally invasive blood profiling assays for cancer assessment and monitoring. Large-scale uniform analysis of cancer whole genomes in multiple computing environments Yung CK, O’Connor BD, Yakneen S, Zhang J, Ellrott K, Kleinheinz K, Miyoshi N, Raine KM, Royo R, Saksena GB, Schlesner M, Shorser SI, Vazquez M, Weischenfeldt J, Yuen D, Butler AP, Davis-Dusenbery BN, Eils R, Ferretti V, Grossman RL, Harismendy O, Kim Y, Nakagawa H, Newhouse SJ, Torrents D, Stein LD; PCAWG Technical Working Group bioRxiv 161638; doi: https://doi.org/10.1101/161638 This preprint describes Seven Bridges’ role as part of the PCAWG Technical Working Group to generate high-quality validated consensus variants, forming the basis of the highest resolution collection of cancer genomes to date. Rabix: an open-source workflow executor supporting recomputability and interoperability of workflow descriptions Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D Pac Symp Biocomput (2016) 22: 154–165 This paper describes the Rabix Executor, an open-source workflow engine designed to improve computational reproducibility through reusability and interoperability of workflow descriptions. Reproducible, Scalable Fusion Gene Detection from RNA-Seq Arsenijevic V, Davis-Dusenbery BN Methods Mol Biol (2016) 1381: 223–237. doi: 10.1007/978-1-4939-3204-7_13 This chapter describes an approach to leverage cloud computing technology for fusion detection from RNA-sequencing data at any scale. Research done with our products Mammary tumor-associated RNAs impact tumor cell proliferation, invasion, and migration Diermeier SD, Chang KC, Freier SM, Song J, El Demerdash O, Krasnitz A, Rigo F, Bennett CF, Spector D Cell Rep (2016) 17 (1): 261–274. doi: 10.1016/j.celrep.2016.08.081 Reproducible RNA-seq analysis using recount2 Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT Nat Biotechnol (2017) 35 (4): 319–321. doi: 10.1038/nbt.3838 Microbiome and metagenome analysis on the Cancer Genomics Cloud (CGC) Hsinyi Tsang, Sean Davis https://f1000research.com/posters/6-163 Variant analysis of LY6 genes in TCGA ovarian cancer Bhuvaneshwar K, Al Hossiny M, Gusev Y, Madhavan S, Upadhyay G In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3568. doi:10.1158/1538-7445.AM2017-3568 CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens Bais P, Namburi S, Gatti DM, Zhang X, Chuang JH Bioinformatics (2017) 33 (19): 3110–3112. doi: 10.1093/bioinformatics/btx375 Our recent conference presentations Precision medicine in the million genome era Jack DiGiovanna. Keynote. Festival of Genomics Boston 2016 NCI’s Center for Cancer Genomics and Cloud Pilots initiatives: using large-scale data to advance precision oncology Brandi Davis-Dusenbery. AACR 2017 Enabling petabyte-scale genomics in the cloud: lessons from the NCI Cancer Genomics Cloud Pilots Gaurav Kaushik. ASHG 2016 Activating the immune system: population responses to immunotherapy and novel workflows for neoantigen prioritization Jack DiGiovanna. Keystone Symposia: Cancer Immunology and Immunotherapy 2017 Toward a practical implementation of graph representation of the genome Deniz Kural. Festival of Genomics, London 2017 Improving algorithms & research results with large scale data in genomics Deniz Kural. Keynote. Proventa Bioinformatics 2016 A workflow for accurate neoantigen discovery using NGS data Vladimir Kovacevic. ISMB/ECCB 2017
Further reading: a selection of our favorite articles Precision medicine in the million genome era Davis-Dusenbery B GEN (2017) 37 (2): January 15 In this article, Seven Bridges CEO Brandi Davis-Dusenbery explains how the volume of NGS data gathered by massive genomics projects is driving a fundamental rethinking of data management and analysis methods. Big data: astronomical or genomical? Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE PLoS Biology (2015) 13 (7): e1002195. doi: 10.1371/journal.pbio.1002195 This paper shows how genomics is on par with astronomy, YouTube, and Twitter in terms of data acquisition, storage, distribution and analysis, and how new technologies are needed to meet these computational challenges. Discovery and saturation analysis of cancer genes across 21 tumour types Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G Nature (2014) 505 (7484): 495–501. doi: 10.1038/nature12912 This paper illustrates how large-scale genomic analysis contributes to identifying cancer genes across multiple tumor types. Data analysis: create a cloud commons Stein LD, Knoppers BM, Campbell P, Getz G, Korbel JO Nature (2015) 523 (7559): 149–151. doi: 10.1038/523149a This paper sets out the benefits of making large biological data sets available via cloud services to enable easy access and fast analysis. Genome graphs Novak AM, Hickey G, Garrison E, Blum S, Connelly A, Dilthey A, Eizenga J, Elmohamed MAS, Guthrie S, Kahles A, Keenan S, Kelleher J, Kural D, Li H, Lin MF, Miga K, Ouyang N, Rakocevic G, Smuga-Otto M, Zaranek AW, Durbin R, McVean G, Haussler D, Paten B bioRxiv 101378; doi: https://doi.org/10.1101/101378 This preprint from leaders in graph genome research discusses how representing variation as part of a directed acyclic graph-based reference structure can reduce reference bias and improve the accuracy of alignment and variant calling. The support of human genetic evidence for approved drug indications Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, Cardon LR, Whittaker JC, Sanseau P Nat Genet (2015) 47: 856–860. doi: 10.1038/ng.3314 This article, led by researchers at GlaxoSmithKline, shows how obtaining genetic support for targets can double the success rate in clinical development. The druggable genome and support for target identification and validation in drug development Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, Galver L, Kelley R, Karlsson A, Santos R, Overington JP, Hingorani AD, Casas JP Sci Translat Med (2017) 9: eaag1166. doi:10.1126/scitranslmed.aag1166 In this paper, researchers from University College London combine data from numerous existing genome-wide association studies to identify and connect druggable proteins and known drugs across multiple diseases, facilitating the design of new targeted therapeutics. Open access policy We are committed to supporting the rapid dissemination of scientific knowledge. Seven Bridges pays the open access fees for publications our customers write based on research they did using our software. Find out more